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Abstract

Assistive embodied agents that can be instructed in nat-
ural language to perform tasks in open-world environments
have the potential to significantly impact labor tasks like
manufacturing or in-home care – benefiting the lives of
those who come to depend on them. In this work, we con-
sider how this benefit might be hijacked by local modi-
fications in the appearance of the agent’s operating en-
vironment. Specifically, we take the popular Vision-and-
Language Navigation (VLN) task as a representative setting
and develop a whitebox adversarial attack that optimizes
a 3D attack object’s appearance to induce desired behav-
iors in pretrained VLN agents that observe it in the environ-
ment. We demonstrate that the proposed attack can cause
VLN agents to ignore their instructions and execute alterna-
tive actions after encountering the attack object – even for
instructions and agent paths not considered when optimiz-
ing the attack. For these novel settings, we find our attacks
can induce early-termination behaviors or divert an agent
along an attacker-defined multi-step trajectory. Under both
conditions, environmental attacks significantly reduce agent
capabilities to successfully follow user instructions.

1. Introduction
Developing assistants that follow natural language in-

structions to execute complex tasks in open-world environ-
ments is a compelling task that enables applications like
household robotics [1] and automated warehouse manage-
ment [37]. To study computational mechanisms underpin-
ning the multimodal reasoning skills necessary to support
such applications, the community has rallied around bench-
mark tasks like Vision-and-Language Navigation (VLN)
that require agents to traverse an environment by grounding
a natural language navigation instruction to visual observa-
tions [3]. A key focus in VLN is that agents must gener-
alize to new natural language instructions in novel environ-
ments. However, deploying a learning-based system in un-
controlled environments opens the possibility of malicious

actors that modify the surroundings to intentionally impact
the system’s performance, reliability, or efficiency [5].

One class of such environmental modification is ad-
versarial attacks that optimize for patterns or objects that,
when photographed, induce errors in learning-based sys-
tems – e.g., adversarial stickers [13], t-shirts [40], or 3D
objects [4]. Adversarial attacks directly optimizing digital
inputs are more common and have been applied to image
classifiers [9], natural language processing models [29, 42],
sequential decision making policies [15], and even multi-
modal vision language models (VLMs) [24, 46].

In this work, we study adversarial attacks for the VLN
task – a multimodal sequential decision making task re-
quiring vision-and-language reasoning. We design a white-
box environmental adversarial attack paradigm that lever-
ages differential rendering in 3D mesh environments to op-
timize the appearance of 3D attack objects in VLN envi-
ronments to induce specific behavior from a trained VLN
agent. These attacks are optimized to either (1) force the
VLN agent to immediately terminate the episode by issuing
a stop command even if far from its instructed goal or (2)
follow an attacker-defined trajectory to a location not spec-
ified by the original instruction. We study the effectiveness
of these attacks in response to varying natural language in-
struction and navigation history.

To assess our method and explore model vulnerabili-
ties in VLN, we study its effects on a representative VLN
agent [8] in the popular R2R [3] and RxR [19] datasets. For
both stopping and trajectory-following attacks, we find the
presence of attacked objects results in significant disruption
of VLN performance – e.g., a reduction in success rate from
82.42% to 53.85% on a trajectory-following attacked subset
of R2R. Moreover, we find varying degrees of success for
inducing adversary-desired behaviors for novel instruction-
trajectory pairs – e.g., stop attacks causing episode termina-
tion in 75% of cases and trajectory-following attacks caus-
ing agents to arrive at the new destination 20% of the time
in R2R. For instruction-trajectory pairs used during attack
optimization, these rates increase substantially. Finally, we
assess the influence of method hyperparameters and factors
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like object size and category on attack success.

Contributions. Summarizing this work, we:
– Develop an adversarial attack framework for controlling

the trajectories of VLN agents that uses differentiable
rendering to modify the appearance of 3D scene objects.

– Demonstrate that the resulting attacks are effective at al-
tering the behavior and performance of a representative
VLN model [8] when generalizing to new instruction-
trajectory instances in the attacked scene on representa-
tive VLN datasets.

– Present statistical analysis to better understand what fac-
tors influence the success of these attacks.

2. Related Work
Vision-and-Language Navigation (VLN). VLN requires
an embodied agent to traverse an environment by grounding
natural language instructions to visual observations [3]. In
this work, we study HAMT [8] as a representative VLN
agent with a history mechanism that preserves information
from past visual inputs for future decision-making. We refer
readers to a recent survey for additional background [14].

Generalizable Adversarial Attacks. Adversarial Machine
Learning (AML) [5] is critical for exposing vulnerabili-
ties in ML systems by identifying inputs that induce fail-
ure states or controllable behaviors. Adversarial attacks,
a common form of AML, craft inputs that provoke spe-
cific responses from models. While early attacks focus on
RGB image perturbations that cause misclassifications in
vision systems [28,38], the scope of these attacks has broad-
ened to include other domains like natural language pro-
cessing [29, 42], control policies [15], and more [9].

Prior work demonstrates the generalization of adversar-
ial attacks beyond pathological fine-grained RGB pertur-
bations, highlighting vulnerabilities in safety-critical sys-
tems. [28] demonstrate attacks that generalize across im-
ages, while [15] show that similar attacks can extend and
generalize to neural network policies. [24] study transfer-
able attacks for vision-and-language models such that per-
turbing a single image would mislead all predictions given
different textual prompts. Notably, [17,20] study robustness
of adversarial images to digital-to-physical transformations
like printing, showing that adversarial attacks are generaliz-
able to the real world. Our work extends the understanding
of adversarial attacks by focusing on multimodal embod-
ied agents in the VLN setting, showing that localized con-
sistent appearance modifications on 3D objects can signif-
icantly disrupt agent behavior, hijacking agent’s sequential
decision making process. Unlike previous studies demon-
strating generalization across images, models, and policies,
our attacks must generalize across unseen natural language
instructions and navigation trajectories.

Adversarial Attacks on Embodied Agents. While early

work attacking reinforcement learning (RL) policies con-
sider perturbing an agent’s visual inputs when playing Atari
games [15,22,43], recent work considers the more complex
task of attacking embodied agents in 3D environments [33].
Two works in particular are most similar to ours. [45] con-
sider attacking VLN agents, but do so in the setting of feder-
ated learning by leveraging a malicious client to output poi-
soned data causing the global agent to disregard the natural
language instruction and instead follow a series of visual
triggers. [23] study 3D adversarial attacks on EQA [10].
Unlike our work, they consider synthetic (rather than nat-
ural) QA-like language instructions, attack the question-
answering output of the agent rather than its navigation tra-
jectory, and operate in unrealistic synthetic scenes.
Environment Attacks. Adversarial attacks often target the
environment where a digital image is captured rather than
altering the image pixels directly. [6] develop “adversarial
patches” that induce specific misclassifications when placed
on images. Similarly, [13] create robust physical sticker-
based attacks that mimic graffiti and remain effective un-
der varied real-world conditions. Several works consider
camouflage textures that can be applied to real objects. [40]
design adversarial shirt patterns to deceive object detection
models. Similar methods are applied to varied objects [12]
and cars [39] to fool image classifiers and object detectors,
respectively. [21] use physical semi-translucent stickers on
camera lenses, attacking the camera apparatus instead of
objects in the environment. Several recent works leverage
differentiable rendering to perturb 3D scenes. [4, 30] mod-
ify the texture of 3D objects to induce robust 2D adversarial
image attacks, while [26, 44] focus on attacks against mod-
els which operate in 3D environments themselves.

In contrast, our work studies environmental adversarial
attacks on VLN agents. This approach involves permuting
the RGB texture of an object in the scene during navigation,
directing the agent to follow a different path from the one
specified in the natural language instruction. Unlike prior
work primarily targeting static image classification and de-
tection, this work focuses on dynamic navigation tasks and
the interplay between visual and linguistic inputs.

3. Adversarial Attacks on VLN Agents
Before describing our adversarial environmental attack

framework, we establish notation for the task setting.
VLN Episodes and Agents. A single Vision-and-Language
Navigation (VLN) episode can be defined as a tuple (E, 𝐼,
𝜏) consisting of an environment E in which the agent is sit-
uated, a natural language navigation instruction 𝐼, and a tra-
jectory 𝜏 through E corresponding to accurately following
𝐼. In standard discrete VLN settings [3], the environment E
is represented as an undirected navigation graph with nodes
VE corresponding to a discrete set of environment locations
the agent can visit and edges 𝐿E between nodes which the



Figure 1. We directly optimize the appearance of an in-environment object to control the trajectory of a trained VLN agent using a
differentiable renderer. 1 Adversarial observations are rendered at an attack viewpoint containing the attack object. 2 The VLN agent
takes this observation as input and 3 we supervise the agent’s trajectory from this point to match a predetermined attack trajectory. 4
We compute loss gradients with respect to the object texture and use them to 5 update the object’s appearance in the 3D mesh.

agent is allowed to traverse. A trajectory is then a sequence
𝜏 = [𝑣0, 𝑣1, ..., 𝑣𝑛] where all 𝑣𝑡 ∈ VE and (𝑣𝑡−1, 𝑣𝑡 ) ∈ 𝐿E .
Further, each location 𝑣𝑖 is associated with a panoramic ob-
servation of E taken at 𝑣𝑖 which we denote as 𝑜𝑣𝑖 .

Successfully following an instruction in a new environ-
ment requires making a sequence of accurate predictions
about where to navigate next. Given an instruction 𝐼, a
partial trajectory [𝑣0, ..., 𝑣𝑡 ] up to the current step 𝑡, and
the corresponding observations [𝑜𝑣0 , ..., 𝑜𝑣𝑡 ], a VLN agent
𝜋𝜃 produces a distribution over candidate navigation actions
A(𝑣𝑡 ) = 𝑁 (𝑣𝑡 ) ∪ {STOP}, where 𝑁 (𝑣𝑡 ) is the set of nodes
connected to 𝑣𝑡 and the STOP action terminates the episode.
The agent’s action is then selected as

argmax
𝑎∈A(𝑣𝑡 )

𝜋𝜃
(
𝑎 | 𝐼, [𝑣0, ..., 𝑣𝑡 ] , [𝑜𝑣0 , ..., 𝑜𝑣𝑡 ]

)
.

The trajectory terminates when the agent issues the STOP
command and agent performance is based on the similarity
of the resulting trajectory to the ground truth 𝜏.
Adversarial Attacks on VLN Agents. As the VLN task
is a proxy for real language-guided embodied systems, we
consider how an adversary might gain influence over a real
VLN agent’s behavior when it is deployed in uncontrolled
environments. For instance, how a delivery robot might
be diverted to a desired location or a surveillance drone be
made to end its rounds prematurely – regardless of the orig-
inal instructions they were given by their users. In both, an
adversary would like to be able to dictate the sequence of
actions an agent takes after encountering the attack.

In this embodied setting, the agent’s visual observations
would be acquired using an onboard camera. Consequen-
tially, standard adversarial attacks that directly modify im-
age pixels [28] would only be possible if an adversary has
gained software access to the agent. Alternatively, transpar-
ent film-based attacks that are applied over a physical cam-
era lens have been developed [21] that might be applied, but
assume physical access to the agent a priori.

Rather than assuming access to individual agents, we
consider a class of object-based environmental attacks

where an adversary has control over the appearance of an
attack object in the 3D environment. Further, we do not as-
sume the adversary knows the particular instruction given
to the agent or the partial trajectory it has taken before en-
countering the attack object. That is to say, a successful
attack must generalize to new language instructions and ob-
servation histories. While many goals for the adversary are
possible, we consider trajectory attacks where an attacked
agent is made to follow an adversary-defined trajectory af-
ter encountering the attack object. This requires the attack
to influence a whole sequence of decisions, even when the
attack object itself may no longer be visible.

Formalizing this slightly, we seek a procedure to adjust
an object’s appearance in order to maximize the expected
likelihood of a given VLN agent following an attack trajec-
tory after entering the attack object’s location. To promote
generalization of the attack, this expectation is over pairs
of natural instructions and corresponding agent trajectories
prior to encountering the attack object. We examine this
in the whitebox setting where the adversary also has access
to the VLN model structure and weights being deployed as
well as the target environment.

3.1. Attack Methodology
Our attack framework is demonstrated in Fig. 1 for a sin-

gle trajectory. Given a textured 3D mesh representation of
the environment, we select a viewpoint and object to attack.
1 For an agent approaching this attack viewpoint, we use a

differentiable rendering pipeline to produce the correspond-
ing panoramic observation. 2 Given the history of its tra-
jectory so far, the instruction, and the rendered adversar-
ial observation, the VLN agent produces a distribution over
next actions. 3 We supervise the agent to assign high prob-
ability to the attack trajectory and 4 backpropagate gradi-
ents of this loss all the way to the object texture in the 3D
mesh. 5 With this gradient, we update the object’s texture
while respecting attack magnitude constraints. To provide
generalization, we perform this optimization over a set of
episodes that pass through the attack viewpoint.



Attack Viewpoint and Trajectory. We denote the view-
point where the attack object is located as the attack view-
point 𝑣ATK. After entering the attack viewpoint, a success-
fully attacked VLN agent would then follow the attack tra-
jectory 𝜏 = [�̂�0, �̂�1, ..., �̂�𝐿 ,STOP] terminating at the target
location by issuing the STOP command. We refer to the
agent’s trajectory up to encountering 𝑣ATK as the guide tra-
jectory and denote it as 𝜏≤𝑣ATK . We denote the correspond-
ing observation sequence in a similar fashion as 𝑜≤𝑣ATK .
Observation Rendering. Given a 3D model of the envi-
ronment E consisting of a 3D mesh denoted 𝑀E and corre-
sponding texture atlas image 𝑇E , we apply the PYTORCH3D
[35] differentiable renderer to produce observations through
which gradients can affect object textures. In contrast to
image-level attacks, our framework takes into account the
view consistency of the attacked object by directly optimiz-
ing an explicit 3D representation.

As differentiable rendering has a high memory and com-
putational cost, we limit its use to a subset of viewpoints
along the attack trajectory. Specifically, we render obser-
vations for the attack viewpoint and the following next two
steps. This allows the object’s appearance to not just affect
the decision where the object is most visible, but also future
decisions more effectively [34, 36] while ensuring consis-
tent appearance across these different views. To further re-
duce costs, we only render panorama sub-images that con-
tain the attack object. When attacking an object, we produce
an object mask 𝐷 such that 𝐷𝑖 is 1 if the 𝑖𝑡ℎ face in the mesh
is used to render the object and 0 otherwise.
Optimization. As we would like our attacks to general-
ize to new trajectories and instructions, we consider a set
of VLN episodes {(E, 𝐼 (𝑖) , 𝜏 (𝑖) )}𝑛

𝑖=1 for training the attack
such that each ground truth trajectory 𝜏𝑖 includes 𝑣ATK. To
maximize the expected likelihood described above, we con-
sider the cross entropy loss for the agent following the at-
tack trajectory after arriving at the attack viewpoint 𝑣ATK,
denoting it as ℓ (𝑖)CE (𝑇E) equal to

−
𝐿+1∑︁
𝑡=0

ln 𝜋𝜃
(
�̂�𝑡 | 𝐼 (𝑖) , [ 𝜏 (𝑖)≤𝑣ATK︸︷︷︸

Guide
Traj.

, 𝜏<𝑡︸︷︷︸
Attack
Traj.

], [ 𝑜 (𝑖)
≤𝑣ATK

, 𝑜�̂�<𝑡︸        ︷︷        ︸
Panoramic

Observations

]
)

where the summation traverses each step in the attack tra-
jectory and 𝜏<𝑡 and 𝑜�̂�<𝑡

denote the attack trajectory and ob-
servations up to time step 𝑡. We denote the aggregation of
this loss across a batch of attack training episodes as LCE.

To update object appearance, we take the gradient of
LCE with respect to the object texture, computing 𝐷 ⊙
∇𝑇ELCE where ⊙ denotes a gradient masking for non-
object mesh faces and 𝑇E is the texture atlas image. With
this, we use the ADAM optimizer [18] to update 𝑇E . In
line with existing Projected Gradient Descent-based attack

strategies [25], we limit the 𝐿∞ norm of the changes from
the original to some attack magnitude constant 𝜖 and clamp
color values to [0,1]. This iterates over multiple batches and
update steps. The final output of this optimization process
is an altered 3D environment model E′ in which the appear-
ance of the attack object has been modified. We can then
evaluate the attack on new instruction-trajectory pairs.

3.2. Generating and Evaluating Attacks
To evaluate our attack strategy, we consider VLN

episodes from the Room-2-Room (R2R) dataset [3]
consisting of nearly 22,000 episodes across 90 in-
door environments from the MP3D dataset [7]. These
episodes are divided into R2R-train, R2R-val-seen,
R2R-val-unseen, and R2R-test. For our pur-
poses, we focus on R2R-train and R2R-val-seen
which share the same set of environments but differ-
ent trajectory-instruction pairs. We consider episodes in
R2R-val-seen to select attack viewpoints and objects
that have sufficient supporting episodes in R2R-train to
train an attack. Note that while VLN agents have been
trained on R2R-train, R2R-val-seen episodes are
novel instruction-trajectory pairs to the model and attacks.

We also consider RxR [19] to additionally verify
effectiveness of our method. RxR is a multilingual
and larger VLN dataset consists of more than 16,000
paths and 120,000 fine-grained grounded instructions.
RxR situated in the same set of house environment
as R2R and has longer instruction and longer path on
average: 78 vs. 29 words, 8 vs 5 edges. Simi-
lar as in R2R, we consider RxR-train-guide and
RxR-val-seen-guide that share the same set of en-
vironments, and use RxR-train-guide to train at-
tack while using RxR-val-seen-guide to select attack
viewpoints and objects.

We use train-data and val-seen-data for ease
of description on data processing over R2R and RxR.

Candidate Attack Objects. To select attack objects, we
consider object visibility annotations from [32] associated
with 3D object segmentations from MP3D [7] – examin-
ing objects from the most common categories of chair,
cabinet, table, plant, sofa, and TV monitor.
For each viewpoint in R2R/RxR, we compile a list of these
objects visible from that location. Further, we discard any
object that does not make up at least 40% of the pixels in
at least one of the 36 panoramic sub-images for this view-
point. To compute this visibility score, we render the object
mask at each of the sub-images and compute the pixel ratio.

Constructing Attack Instances. For each episode (E, 𝐼, 𝜏)
in val-seen-data, we check if there exists any view-
points 𝑣∈𝜏 with a valid candidate attack object 𝑋 and at
least 5 episodes in train-data that pass through 𝑣. Fur-
ther, we exclude any training episode if its guide trajectory



matches that of the val-seen episode to ensure our eval-
uation represents a novel observation history. If multiple
viewpoints meet this criteria, we select the one correspond-
ing to the object with the largest visibility score and denote
it as the attack viewpoint 𝑣ATK for this instance. Finally, we
generate an attack trajectory by selecting a viewpoint that
is at least three meters away from the original final view-
point 𝑣𝐾 in 𝜏 and find a shortest path 𝜏ATK = 𝑣ATK, ..., 𝑣𝐾
to it from the attack viewpoint. A resulting attack in-
stance 𝑗 then consists of an environment E 𝑗 , instruction 𝐼 𝑗 ,
ground truth trajectory 𝜏𝑗 , attack object 𝑋 𝑗 , attack view-
point 𝑣ATK 𝑗

, attack trajectory 𝜏ATK 𝑗
, and set of training

instances D 𝑗 = {E 𝑗 , 𝐼 (𝑖) , 𝜏 (𝑖) }𝑁𝑖=1 ⊂ train-data. When
optimizing our attack, we split D 𝑗 80/20 into DTrain

𝑗
and

DVal
𝑗

to produce a validation set. In total, this process
yields a test set with 273 attack instances and 254 attack
instances for R2R and RxR respectively. Notice we sam-
ple a subset of attack instances constructed from RxR to
accommodate compute resource and time limit.

Evaluation. For each attack instance, we run our optimiza-
tion procedure described in the preceding subsection, yield-
ing an attacked environment E′. During evaluation, we ren-
der all observations using E′ rather than just near the at-
tack viewpoint. To evaluate the effect on the attack instance,
we force the VLN agent through the guide trajectory until
reaching 𝑣ATK and then allow it to autoregessively navigate
the environment until it terminates by issuing the STOP ac-
tion. We consider two evaluation strategies. In the first, we
measure how the attack affects the agent’s ability to reach
the goal specified by the instruction. For the second, we
measure whether the attacked environment actually causes
the agent to follow the corresponding attack trajectory. For
both, we use standard VLN path comparison and success
metrics described in the following section – comparing the
agents trajectory after 𝑣ATK with either the rest of the orig-
inal trajectory 𝜏 or the attack trajectory 𝜏ATK.

4. Experimental Results
Metrics. For evaluating attack effectiveness, we focus on
two primary VLN metrics [16] – success rate (SR) and nor-
malized dynamic time warping (nDTW). Given a predicted
trajectory and a reference trajectory, success requires the fi-
nal viewpoint in the predicted trajectory be no further than
3m from that of the reference. Meanwhile, nDTW is a path
similarity metric which is maximized if paths match exactly.

VLN Model. We conduct our attack experiment using the
HAMT [8] model. HAMT is a widely-used VLN model in
the literature and representative of common architectures.
Visual inputs are encoded using a ViT [11] image encoder.
Trajectory history is encoded in a hierarchical fashion then
jointly combined with encodings of instruction text and the
current observation to predict the next action. It is trained in

R2R RxR

Metrics Real Rendered Real Rendered

SR ↑ 75.61 69.64 59.37 53.00
nDTW ↑ 78.33 72.16 65.41 59.13

Table 1. Top: Real scene images (top row) are higher fidelity than
rendered images (bottom row). Bottom: Despite this, we find VLN
performance for HAMT on the val-seen split for R2R and RxR
only drop by marginal amounts when replacing real images with
rendered ones.

multiple stages with auxiliary losses followed by finetuning
on VLN tasks with supervised and reinforcement learning.
We use the best performing model weights provided by au-
thors and keep weights frozen at all times.

Implementation Details. For attack optimization, we set
ADAM’s learning rate to 1e-2 and exponential moving av-
erage rates to 𝛽1 = 0.9 and 𝛽2 = 0.999. For attack magni-
tude, we set 𝜖 = 0.3. To further reduce computational and
memory costs, we decimate the environment meshes from
MP3D and use lower-res texture atlas images. Optimiza-
tion runs for 300 batches (iterations) with batch size 16, and
saves checkpoints every 30 iterations. For RxR dataset, we
increase to 600 batches to help convergence. After training,
the checkpoint with highest nDTW with respect to attack
trajectory 𝑣ATK 𝑗

on the validation set D 𝑗 of each attack
instance j is retained. Recall that each attack instance is
trained independently. Each attack training was performed
on an NVIDIA A40 GPU and took on average 40 minutes
for R2R and 90 minutes for RxR per attack.

Quantifying Domain Gap from Rendering. Our approach
relies on rendering images from reconstructed MP3D envi-
ronments; however, these reconstructions can be noisy and
we further reduce their fidelity to accommodate available
compute. As a result, the rendered images are lower qual-
ity than those with which VLN agents are typically trained
– especially for scenes containing thin or reflective struc-
tures. If this alone significantly affects VLN agent perfor-
mance, we need to account for it when evaluating the im-
pact of rendered attacks. To evaluate this gap, we compare
performance of HAMT on the original R2R/RxR panora-
mas and those rendered from unattacked 3D reconstructions
of the same environments. As shown in Tab. 1, the exper-
iment using rendered imagery does demonstrate some re-
duced performance – approximately 6-7 points in success



R2R Train
(⊂ R2R train)

Validation
(⊂ R2R train)

Test
(⊂ R2R val-seen)

Attacked: ✓ ✗ 𝚫 ✓ ✗ 𝚫 ✓ ✗ 𝚫

Stop % ↑ 98.28 1.80 96.48 80.70 1.97 78.73 75.98 0.98 75.00

RxR Train
(⊂ RxR train)

Validation
(⊂ RxR train)

Test
(⊂ RxR val-seen)

Attacked: ✓ ✗ 𝚫 ✓ ✗ 𝚫 ✓ ✗ 𝚫

Stop % ↑ 46.05 13.68 32.37 33.04 13.91 19.13 25.20 14.17 11.03

Table 2. Single-step Attacks for R2R (left) and RxR (right). We compare stop rate for the HAMT agent operating in attacked (✓) and
unaltered (✗) environments as well as the difference (𝚫). Across all settings, we see our attacks substantially increase the likelihood of a
VLN agent terminating prematurely – especially for R2R where 75% of novel trajectory-instruction pairs are ended by the agent.

or path following metrics – but the model retains the bulk
of its capabilities. To be considered successful, our attacks
will need to illicit larger reductions than these.
Evaluation. We evaluate in the following conditions:
– Train. While our primary focus is on attacks that gen-
eralize to new trajectory-instruction pairs, evaluating attack
success for the examples on which they are optimized is
a common setting for adversarial examples [9]. We eval-
uate each attack instance on the examples used to opti-
mize the attack – i.e., each episode in DTrain

𝑗
is evalu-

ated in the attacked environment E′
𝑗
. Metrics are aggre-

gated across all training episodes from all attack instances.
Note that these instances belong to the R2R-train /
RxR-train-guide set and thus have been seen by the
HAMT model during training. As such, they require no
generalization from the attack or the VLN model.
– Validation. Analogously, episodes from each valida-
tion set DVal

𝑗
are evaluated on their corresponding attacked

environment E′
𝑗

and metrics are aggregated across all attack
instances. As these episodes are also from R2R-train /
RxR-train-guide, they are only novel to the attack and
not the model. Note that checkpoint selection uses these
episodes so attack performance is likely overestimated here.
– Test. Finally, we evaluate each attack instance 𝐼 𝑗 , 𝜏𝑗
taken from R2R-val-seen / RxR-val-seen-guide
on the corresponding attacked environment E′

𝑗
. These

trajectory-instruction pairs have not been seen when opti-
mizing the attack or training the VLN model. This intro-
duces potential out-of-distribution signals in the text and
history features, leading to unpredictable behavior when
these inputs are processed by the model in the attacked en-
vironment E′

𝑗
. Therefore, we consider this to be the most

challenging evaluation settings.

4.1. Single-step Attacks
Before reporting results for our trajectory-level attacks,

we examine a special case of our attack framework – pro-
ducing attacks that cause agents to stop immediately. By
setting the attack trajectory to be empty (𝜏ATK = {}) agents
are supervised to issue the STOP action and terminate the
episode at the attack viewpoint. All other details of our
methodology remain as described. This setting is analo-
gous to environmental attacks against image classification
systems; however, we consider a VLN model which is

Figure 2. Example original and attacked objects for a desk (left),
cabinet (middle), and sofa (right) from trajectory-level attacks.

also conditioned on language and navigation history. Addi-
tional filtering is applied during attack generation to ignore
episodes which already terminate at 𝑣ATK. We show stop
rates in Tab. 2 for the HAMT agent operating in attacked
(✓) and unaltered (✗) environments. Note that unaltered (✗)
environments are rendered with PYTORCH3D as in Tab. 1.

For R2R (left), we find this simple attack is highly effec-
tive and would be extremely disruptive. The agent stops
immediately in 75.98% of Test instances – a 76x in-
crease from the unaltered environments. For Train and
Validation samples, stop rates approach 98.28% and
80.70% respectively. If deployable, these attacks could
make no-go zones for VLN agents where the stop action
is taken regardless of the user’s original instruction.

For RxR (right), we also see increased stop rates; how-
ever, the magnitude of these effects are significantly smaller
than in R2R. We believe this difference is due to RxR
having substantially longer path lengths – roughly ∼6.1
vs. ∼10.5 average steps – inducing strong biases in the
trained VLN models. Our attack trajectories require an
agent to stop between step 4 and 6 on average, requiring
attacks to override a strong prior from model training.

4.2. Trajectory-level Attacks
We show trajectory-level attack results in Tab. 3. Over-

all, we find strong evidence that the attacks can induce
multi-step trajectory following behaviors.

For R2R (left), the HAMT agent operating attacked en-
vironments (✓) is roughly 5x more likely to arrive at the
terminal location of the attack trajectory than in unaltered
environments (✗) – success rate climbing from 3.66% to
21.61% in Test. Likewise, nDTW trends that suggest the
agent is more likely to adhere to the attack trajectory. We
emphasize that examples in Test do not contribute to at-



R2R Train
(⊂ R2R train)

Validation
(⊂ R2R train)

Test
(⊂ R2R val-seen)

Attacked: ✓ ✗ 𝚫 ✓ ✗ 𝚫 ✓ ✗ 𝚫

SR ↑ 30.26 1.15 29.11 22.01 1.04 20.97 21.61 3.66 17.95
OSR ↑ 43.00 6.17 36.83 34.32 6.93 27.39 38.46 11.36 27.10
nDTW ↑ 53.38 29.11 24.27 47.48 29.34 18.14 46.65 30.60 16.05

RxR Train
(⊂ RxR train)

Validation
(⊂ RxR train)

Test
(⊂ RxR val-seen)

Attacked: ✓ ✗ 𝚫 ✓ ✗ 𝚫 ✓ ✗ 𝚫

SR ↑ 25.26 5.30 19.95 16.23 2.61 13.62 20.47 5.51 14.96
OSR ↑ 69.74 23.45 46.29 59.13 18.55 40.58 78.74 35.43 43.31
nDTW ↑ 30.64 18.26 12.38 25.56 15.05 10.51 21.25 14.44 6.80

Table 3. Trajectory-level Attacks for R2R (left) and RxR (right). We report results for trajectory-level attacks that cause agents to follow
specific attack trajectories. We compare success rate (SR), oracle success rate (OSR), and normalized Dynamic Time Warping (nDTW)
for the HAMT agent operating in attacked (✓) and unaltered (✗) environments as well as the difference (𝚫). Higher values imply better
adherence to the attack trajectory. Across all settings, our attacks increase the agent’s likelihood of following the attack trajectory.

R2R Train
(⊂ R2R train)

Validation
(⊂ R2R train)

Test
(⊂ R2R val-seen)

Attacked: ✓ ✗ 𝚫 ✓ ✗ 𝚫 ✓ ✗ 𝚫

SR ↑ 46.11 91.35 -45.24 55.46 91.33 -35.87 53.85 82.42 -28.57
nDTW ↑ 47.44 87.73 -40.29 58.21 87.06 -28.85 53.68 81.18 -27.50

RxR Train
(⊂ R2R train)

Validation
(⊂ R2R train)

Test
(⊂ R2R val-seen)

Attacked: ✓ ✗ 𝚫 ✓ ✗ 𝚫 ✓ ✗ 𝚫

SR ↑ 24.47 63.17 -38.70 29.86 62.90 -33.04 25.59 59.06 -33.47
nDTW ↑ 27.17 66.94 -39.77 32.48 66.91 -34.43 29.28 62.67 -33.39

Table 4. Impact on VLN Performance for R2R (left) and RxR (right). We report the impact on VLN performance for the HAMT agent en-
countering trajectory-level attacks in attacked (✓) and unaltered (✗) environments as well as the difference (𝚫). Reductions in performance
resulting in negative differences indicate our attacks are successful at disrupting the VLN agent’s ability to follow given instructions.

tack optimization or the training of the VLN agent. Each
of these successes represent an attack generalizing to new
natural language and observation sequences by correctly in-
ducing the desired multi-step behavior in the multimodal se-
quential decision making policy of HAMT. Example attack
objects are shown in Fig. 2.

For RxR (right), we find attacked agents are roughly
3x more likely to arrive at the terminal location of the at-
tack trajectories, with Test success increasing by 15 points
compared to unaltered environments. As in the previous
experiments, absolute change in SR and nDTW are lower
in RxR than R2R. To examine this, we also include oracle
success rate (OSR) which checks if the agent arrives at the
target location at any point in its trajectory – essentially ig-
noring the STOP component of navigation. With OSR, we
see a significant effect for RxR. Similar as Single-step case,
we find the guiding trajectory followed by the attack trajec-
tory averages 2-3 steps shorter than standard RxR training
instances. This again suggests that while the attack is suc-
cessful at redirecting the agent along the attack trajectory,
the strong model bias for certain path lengths may be diffi-
cult to overcome. Further, RxR’s broader set of instructions
and paths may result in a more robust agent in terms adher-
ing to the instruction – as discussed in its proposal [19].

Effect on VLN Performance. Beyond inducing the desired
trajectory, our trajectory-level attacks also significantly dis-
rupt the agent’s ability to follow its original instructions. In
Tab. 4, we show standard VLN performance for HAMT in
attacked (✓) and unaltered (✗) environments. We find our
attacks cut success rate by nearly 35% and 57% in Test
instances for R2R (left) and RxR (right) respectively with
similar drops in other metrics. As in our prior results,

these effects are stronger for samples from Train and
Validation that are involved in the training of the attack.
Note that performance in unaltered environments for Test
does not match that reported in Tab. 1 because only gener-
ated attack instances (Sec. 3.2) are considered here rather
than all of R2R-val-seen / RxR-val-seen-guide.

4.3. Method Ablations
To better understand the impact of hyperparameter

choices on our attacks, we perform several ablations for
trajectory-level attacks in R2R. Further details can be found
in the supplementary materials. For space, we present re-
sults on Validation and Test instances only.
Steps Rendered. For computational reasons, we only ren-
der observations during training for three viewpoints (see
Sec. 3)– the attack viewpoint and proceeding two view-
points where the attack object is likely still visible. In Tab. 5
(a), we vary the number of rendered observations during
training between 1 (only the attack viewpoint) and 3. As
in all our experiments, all observations are rendered dur-
ing evaluation. We find rendering more steps improves at-
tack performance significantly. For example, we observe a
nearly 4x increase in Test success rate when rendering 3
steps instead of just 1. Rendering multiple observations bet-
ter matches the evaluation setting and optimizes the attack
to affect the agent across different viewing perspectives.
Attack Budget. Varying 𝜖 allows for differing maximum
object texture perturbations with larger 𝜖 denotes a stronger
but more distorted and identifiable attack [9]. We use 𝜖’s of
0.1, 0.3, and 0.5 in Tab. 5 (b). As expected, we find larger
attack magnitudes lead to better attack performance.
Instructions. Each trajectory in R2R is paired with 3 in-



R2R Validation
(⊂ R2R train)

Test
(⊂ R2R val-seen)

Steps SR ↑ nDTW ↑ SR ↑ nDTW ↑

1 6.86 41.18 4.08 33.17

2 17.97 47.57 12.25 42.76

3∗ 21.57 49.09 19.05 46.49

(a) Steps Rendered

R2R Validation
(⊂ R2R train)

Test
(⊂ R2R val-seen)

𝜖 SR ↑ nDTW ↑ SR ↑ nDTW ↑

0.1 17.97 46.83 16.33 42.57

0.3∗ 21.57 49.09 19.05 46.49

0.5 21.90 49.68 22.45 46.55

(b) Attack Budget

R2R Validation
(⊂ R2R train)

Test
(⊂ R2R val-seen)

Instr. SR ↑ nDTW ↑ SR ↑ nDTW ↑

1 18.63 46.73 12.93 40.84

2 21.90 49.37 17.69 42.95

3∗ 21.57 49.09 19.05 46.49

(c) Instructions

R2R Validation
(⊂ R2R train)

Test
(⊂ R2R val-seen)

Iters SR ↑ nDTW ↑ SR ↑ nDTW ↑

300∗ 21.57 49.09 19.05 46.49

600 30.39 55.43 26.53 50.26

900 31.70 56.31 26.53 51.71

(d) Training Iterations

Table 5. Ablations of Attack Hyperparameters in R2R. We use ∗ to denote baseline hyperparameters. During each ablation study, we vary
only one hyperparameter at a time while use baseline hyperparameters for others.

structions. In Tab. 5 (c), we vary how many of these are
included during attack optimization per trajectory. Note we
keep the training iterations the same across all runs. We find
using more instructions during attack optimization gener-
ally leads to better generalization to the novel instructions
encountered in Validation and Test instances.

Training Iterations. Keeping batch size fixed at 16 and
checkpoint selection on Validation, we vary the num-
ber of training iterations in Tab. 5 (d). We find longer train-
ing times lead to substantial improvements in attack gener-
alization – e.g., increasing Test success rates by 7.5 points
when training time is tripled from 300 to 900 iterations.

4.4. Factors that Influence Attack Success
We investigate the effects from different factors on

trajectory-level attack effectiveness on R2R Test. To
facilitate our analysis, we frame experiments as paired-
measurements on individual attack instances with nDTW
measured pre- and post-attack. We assess the statistical
significance of selected factors affecting nDTW by fitting
linear mixed effect regression (lmer) models and evaluate
significance with ANOVA and post-hoc t-tests.

Object Size. We first examine effects of the attack ob-
ject’s size across navigation viewpoints. For each sub-
image within each panoramic viewpoint, we calculate the
attacked object’s size as the percent of the sub-image cov-
ered by the object. For example, an object which cannot
be seen will have a coverage of 0% and one which fills the
entire view 100%. We find strong evidence (𝑝=0.005) of a
difference between pre/post-attack groups attributed to the
size of the object in the selected view at the attack view-
point. The coefficient of the effect indicates (𝑝=0.001) a
+0.59 point increase to attack nDTW per percent coverage.
When considering the average coverage over all selected
views in the attack trajectory, we again observe a significant
difference between groups (𝑝<0.001) and find the strength
of the effect to increase to +1.50 (𝑝<0.001) points per aver-
age percent covered. We note that the maximum observed
coverage for a single selected view is 47% and we would
not suspect a linear trend in nDTW up to 100% coverage.

Object Category. We analyze if any particular object cat-
egory is easier or harder to attack and find strong evi-

dence (𝑝=0.002) for a difference between groups based on
object category. Specifically, we find that the categories
sofa (+15.15 nDTW, 𝑝=0.028) and table (+8.65 nDTW,
𝑝=0.042) are particularly susceptible to attack. Congruent
with the size analysis above, we hypothesize that this is due
at least somewhat to these objects being larger.

Training Episode Diversity. We find some evidence of a
difference between groups (𝑝=0.081) attributed to heading
entropy when entering the attack viewpoint during training.
We calculate heading entropy over the normalized rates of
discrete entrance angles for training episodes entering the
attack viewpoint. We find a positive correlation between en-
tropy and nDTW (+8.41 nDTW/unit, 𝑝=0.036) indicating
that greater trajectory diversity may improve performance.

Object in Instruction. Finally, we test for an effect from
the attacked object being mentioned in the instruction. We
use Porter stemming [31] to reduce instruction words to
their root form and then check for overlap in the Word-
Net [27] synsets of those words and the attacked objects
class. We do not find any significant (𝑝=0.467) effects. This
observation is potentially supported by prior work that sug-
gests object grounding is weak in VLN agents [41].

5. Discussion
In this work, we developed an adversarial attack frame-

work that uses differentiable rendering to modify the ap-
pearance of 3D scene objects and demonstrated that it can
allow an adversary to significantly impact the performance
of VLN agents and even exert some level of control over
their navigation trajectories regardless of the original user’s
instructions. At current, our work does not address the de-
ployability of these attacks in the real world; however, prior
work in adversarial machine learning [17, 20] and sim2real
transfer of VLN agents [2] suggest it may be possible in
future work. For now, our attacks also require substantial
computation to produce due to the demands of differentiable
rendering and assume a whitebox setting for the adversary;
however, developing a blackbox analog is plausible at an in-
creased computational expense. Together, this suggests that
adequate adversarial defenses should be established prior to
deployment of instructable embodied agents.
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A. Data Description
A.1. R2R Data

As described in Sec 3.2, we select attack instances
from R2R-val-seen that have sufficient support from
R2R-train. In total, we generated 1735 episodes as
Train, 577 episodes as Validation that corresponds
to 273 attack instances as Test. The attack instances cover
68 unique objects spanning 39 environments. Notice the at-
tack for each attack instance trains independently, so each
attack instance has their corresponding train, validation set.
Here we provide the aggregated number.

A.2. RxR Data

As attacks on RxR data taking substantially more com-
pute and time compared to R2R, we random sample a sub-
set based on the number of unique attack objects involved,
which results in a subset covering 20 unique objects resid-
ing in 9 environments. As a result, we have 1659 episodes
for Train, 345 for Validation that corresponds to 254
attack instances in Test. This is comparable to the number
of attack instances of R2R.

A.3. Ablation Data

Similarly, to accommodate for time and compute con-
straints, we random sample a subset from R2R, that covers
34 unique objects out of 68 in total, which spans across 27
environments and result in 955 Train, 306 Validation
and 147 Test attack instances, that is roughly half of the
total dataset on which we reported main result.

B. lmer Construction for Factor Analysis
We investigate the effects from different factors on

trajectory-level attack effectiveness on R2R Test. To
facilitate our analysis, we frame experiments as paired-
measurements on individual attack instances with nDTW
measured pre- and post-attack. Let 𝑌ℎ𝑖 𝑗𝑘 be the response
variable nDTW, where 𝑗 , 𝑘 respectively index random effect
grouping factors for individual objects 𝑜𝑏 𝑗𝑒𝑐𝑡 ∼ 𝑁 (0, 𝜎2

𝑜)
and attack instances 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ∼ 𝑁 (0, 𝜎2

𝑠 ). We assess the
statistical significance of some 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 (e.g., object size)
indexed by 𝑖 with 𝑛 levels affecting nDTW by fitting linear
mixed effect regression (lmer) models of the form:

𝑌ℎ𝑖 𝑗𝑘 = 𝛽0+𝛽1𝑎𝑡𝑡𝑎𝑐𝑘ℎ+
𝑛∑︁
𝑚=2

𝛽𝑚 (𝑎𝑡𝑡𝑎𝑐𝑘ℎ×𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑖)𝑚

+ 𝑜𝑏 𝑗𝑒𝑐𝑡 𝑗 + 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑘 + 𝜖ℎ𝑖 𝑗𝑘 , (1)

where 𝜖ℎ𝑖 𝑗𝑘 ∼ 𝑁 (0, 1) is a random error term, 𝛽0 the
model intercept, 𝛽1 the fixed effect of 𝑎𝑡𝑡𝑎𝑐𝑘 , and 𝛽2:𝑛
the fixed effect of the interactions between 𝑎𝑡𝑡𝑎𝑐𝑘 and

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟. Note that there are exactly two samples for each
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑘 , one for pre-attack (𝑎𝑡𝑡𝑎𝑐𝑘ℎ=0) and one for post-
attack (𝑎𝑡𝑡𝑎𝑐𝑘ℎ=1). Informally, we model paired nDTW
measurements as a main effect from applying the adver-
sarial attack, the interaction effect between the attack and
some predictor, and random intercept effects from attack
instances and objects. We use an ANOVA to determine the
overall significance of factors and examine graphical model
residual diagnostics to validate its modeling assumptions.
For factors with significant effects, we use a post-hoc t-
test to determine if the coefficients relating to post-attack
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 interactions are significantly different from zero.
That is, we verify that the difference in effect from the
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 in pre/post-attack measurements is significant,
and that the strength of that effect in the post-attack setting
is significantly different from zero.
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