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Abstract

To be successful, Vision-and-Language Navigation
(VLN) agents must be able to ground instructions to ac-
tions based on their surroundings. In this work, we develop
a methodology to study agent behavior on a skill-specific
basis – examining how well existing agents ground instruc-
tions about stopping, turning, and moving towards speci-
fied objects or rooms. Our approach is based on gener-
ating skill-specific interventions and measuring changes in
agent predictions. We present a detailed case study analyz-
ing the behavior of a recent agent and then compare multi-
ple agents in terms of skill-specific competency scores. This
analysis suggests that biases from training have lasting ef-
fects on agent behavior and that existing models are able to
ground simple referring expressions. Our comparisons be-
tween models show that skill-specific scores correlate with
improvements in overall VLN task performance.

1. Introduction
Following navigation instructions requires coordinating

observations and actions in accordance with the natural lan-
guage. Stopping when told to stop. Turning when told to
turn. And appropriately grounding referring expressions
when an action is conditioned on some aspect of the envi-
ronment. All three of these example are required when fol-
lowing the instruction “Turn left then go down the hallway
until you see a desk. Walk towards the desk and then stop.”
In this work, we examine how well current instruction-
following agents can execute different types of these sub-
behaviors which we will refer to as skills.

We situate our study in the popular Vision-and-Language
Navigation (VLN) paradigm [2]. In a VLN episode, an
agent is spawned in a never-before-seen environment and
must navigate to a goal location specified by a natural
language navigation instruction. An agent’s instruction-
following capabilities are typically measured at the episode
level – examining whether an agent reaches near the goal
(success rate [2]), how efficiently it does so (SPL [1]), or
how well its trajectory matches the ground truth path which

the human-generated instruction was based on (nDTW
[15]). These metrics are useful for comparing agents in ag-
gregate, but take a perspective that has little to say about an
agent’s fine grained competencies or what sub-instructions
it is able to ground appropriately.

In this work, we design an experimental paradigm based
on controlled interventions to analyze fine-grained agent be-
haviors. We focus our study on an agent’s ability to ex-
ecute unconditional instructions like stopping or turning,
as well as, conditional instructions that require more vi-
sual grounding like moving towards specified objects and
rooms. Our approach leverages annotations from RxR [13]
to produce truncated trajectory-instruction pairs that can
then be augmented with an additional skill-specific sub-
instruction. We carefully filter these trajectories and gen-
erate template-based sub-instructions to build non-trivial
intervention episodes that evaluate an agent’s ability to
ground skill-specific language to the appropriate actions.

To demonstrate the value of this approach, we present a
case study analyzing the behavior of a contemporary VLN
model [6]. While we find evidence that the model can reli-
ably ground some skill-specific language, our analysis also
reveals that its errors are not random. But rather, they re-
flect a systematic bias towards forward actions learned dur-
ing training. For object- or room-seeking skills, we find
only modest relationships between instructions and agent
actions. Finally, we derive aggregate skill-specific scores
and compare across VLN models with different overall task
performance. We find that higher skill-specific scores cor-
relate with higher task performance; however, not all skills
share the same scale of improvement between weaker and
stronger VLN models – suggesting that improvements in
VLN may be fueled by some skills more than others.
Contributions. To summarize this work, we:
- Develop an intervention-based behavioral analysis

paradigm for evaluating the behavior of VLN agents,1

- Provide a case study on a contemporary VLN agent [6],
evaluating fine-grained competencies and biases, and

- Examine the relationships between skill-specific metrics

1https://github.com/Yoark/vln-behave



and overall VLN task performance.

2. Related Work

Vision-and-Language Navigation (VLN). Since its intro-
duction in [2], many variants of the Vision-and-Language
Navigation (VLN) task have been proposed including those
in continuous simulators [12]. We refer the reader to
[7] for a comprehensive survey. In this work, we exam-
ine agents in the Room-Across-Room (RxR) dataset [13]
which extends the original VLN task to a multilingual
setting with longer, more complex trajectories and pose
traces which provide temporal alignment between instruc-
tion words and visual observations. There has also been
significant modelling work to develop instruction-following
agents [6, 8, 10, 11, 14, 16, 20, 21] and we examine three re-
cent models in our analysis [6, 20, 21].

The RxR task is situated in the MATTERPORT3D [4] en-
vironments which provide an interface for agents to move
through the environment along a graph of panoramic view-
points taken in real environments. Matterport3D also pro-
vides region annotations for room type which we utilize in
our experiments. We also leverage annotations from the
REVERIE [17] dataset which extends VLN settings with
an additional goal of identifying an object described by a re-
ferring expression. Specifically, using the annotations from
REVERIEv1 to identify visible objects at each viewpoint.
Evaluating VLN Agents. In standard settings, VLN agents
are evaluated by metrics that focus on either the agent
reaching the goal efficiently (Success weighted by inverse
Path Length [1]) or by their trajectory’s alignment with
the ground truth path (Normalized Dynamic Time Warp-
ing [2]). These metrics focus on the agent’s performance
in aggregate and do not examine agent performance on the
level of sub-instruction or skills.

Some works have examined VLN agent behavior more
closely by masking or replacing portions of the instruc-
tions [9, 23] and observing the resulting change to overall
task metrics like those described above. Zhu et al. [23]
find that VLN agents still achieve relatively high success
rates even when all references to visual objects are masked
from instructions. These findings cast doubt on the vision-
language alignment ability of these agents. [9] also per-
form masking experiments but come to different conclu-
sions, with some models relying more heavily on nouns
than directional words. In both works, agent performance
is measured on an episodic level that relies on a sequence of
agent decisions; however, single errors in a trajectory may
compound and result in misestimating the impact of masked
terms. In contrast to these works, we present a skill-based
analysis of VLN agents by constructing specific interven-
tion episodes wherein the appropriate next action is known.
Behavioral Analysis of AI Models. Recent work in natural

language processes has applied behavioral analysis to ex-
amine specific skill capabilities. Like us, Riberio et al. [19]
develop an intervention paradigm wherein dataset examples
are modified in ways such that the desired change in model
behavior is knowable. These examples and their associated
skills are collected into a “checklist” that can be used to
evaluate models. Likewise, our work can be construed as
generating a checklist of skills for VLN. Yang et al. [22]
follow a similar paradigm and develop a method to automat-
ically generate test cases using a large language models [3].

3. Analyzing the Behavioral of VLN Agents
In this work, we examine fine-grained agent compe-

tency through the lens of behavioral analysis – studying
how agent decisions change in the presence and absence
of skill-specific language instructions. For example, con-
sider object-conditional instructions like “walk towards the
couch”. To demonstrate sensitivity to this instruction, an
agent must be more likely to face a couch when presented
with this instruction than it would otherwise across a wide
range of settings. Note that this analysis examines what
agents do rather than how they arrive at those decisions
and is thus applicable to any VLN agent. To enable this
analysis, we develop an intervention strategy that produces
trajectories-instruction pairs with and without skill-specific
language included. We deploy existing VLN agents on
these to examine their decisions and measure their sen-
sitivity to the intervention. The remainder of this sec-
tion describes our overall methodology – how intervention
episodes are generated and how agents are evaluated – and
additional skill-specific experimental details are provided in
the following section alongside example agent results.

3.1. Building Intervention Episodes

We consider an intervention sample to be a tuple consist-
ing of a trajectory τ , an instruction I that guides an agent
to the end of that trajectory, and an intervention instruction
Iint that describes some desired skill-specific behavior to be
taken from that point. For intervened episodes, an agent will
be given the augmented instruction I+Iint, guided through
the trajectory τ and then its decision will be compared to
the expected behavior described in Iint. We choose this
partial-path construction so we can vary pre-intervention
path length while keeping trajectory-instruction alignment
similar to standard VLN training settings. Fig. 1 (c) shows
one such triplet with a 3-step trajectory, an instruction de-
scribing it, and an underlined intervention prompting the
agent to move “towards the bathroom”. We design different
interventions to study fine-grained skills in Sec. 4.
Candidate Instruction-Trajectories Pairs. To create
trajectory-instruction pairs for intervention samples, we
leverage the detailed annotations in the RxR dataset [13].
RxR provides trajectory-instruction pairs along with ‘pose



You begin looking at some shelving units, one of which has a globe 
and an hourglass on it. Turn to your left until you see the arched 
wooden entryway. Go ahead out of that.

(b) Intervention Candidate

You begin looking at some shelving units, one of which has a globe 
and an hourglass on it. Turn to your left until you see the arched 
wooden entryway. Go ahead out of that into an atrium. Walk 
towards the bathroom.

(c) Intervention Episode

You begin looking at some shelving units, one of which has a globe 
and an hourglass on it. Turn to your left until you see the arched 
wooden entryway. Go ahead out of that into an atrium of sorts and 
turn to the left, taking the door immediately to the left. You're going 
to cut directly across it to the door just beside the mirror, and once 
you are through there you are going to continue straight through 
the bedroom and then stop.

(a) Aligned RxR Example

Truncated trajectory ViewpointPath Target position (intervention) 

Figure 1. To build skill-specific interventions, we truncate existing RxR episodes based on RxR trajectory-instruction alignments (a→b).
We can then extend the instruction with skill-specific language and identify the next step described by this new instruction (c).

traces’ that provide temporal alignment between instruction
words and the annotator’s pose in the trajectory. This allows
us to associate instruction text segments with nodes along
the trajectory – writing the trajectory as a sequence of node
visitations n1, n2, ..., nT with associated sub-instructions
i1, i2, ..., iT uttered at each. Fig. 1 (a) demonstrates this
by color-coding. For each RxR example, we form candi-
date τ , I pairs by truncation – taking the trajectory up to
node nj (τ = {n≤j}) and instruction text prior to arriv-
ing at n (Ip = {i<j}). This provides a trajectory and the
instructions delivering an agent up to the final node. An
example truncation is shown in Fig. 1 (b). For a length T
trajectory, this generates T − 2 candidates; we exclude full-
length trajectories because instructions given at penultimate
nodes often include explicit directions to stop after mov-
ing. Keeping these would add confusion about the appro-
priate behavior to take after intervention text is appended.
We consider all English trajectory-instruction pairs from the
val-unseen-guide split of RxR [13] for this process.
Filtering and Intervention Instructions. Not all candidate
instruction-trajectory pairs are useful for all interventions –
for example, it may be impossible to ”turn left and go for-
ward” for a trajectory that ends on a node without a leftward
neighbor. Likewise, an example where a leftward turn is the
only option could not demonstrate differential agent behav-
ior with and without such an intervention. As described in
Sec. 4 below, we filter candidate trajectories for each exper-
iment to ensure agents have both intervention relevant and
irrelevant action options in every episode.

To develop intervention instructions, we manually ex-
amined the RxR dataset to identify common skills. In this
work, we examine four common skills related to stopping,
responding to directional language, and moving relative to
objects or room references. For each, we develop a set of
language templates to build intervention instructions Iint.

These templates are based on common phrases from RxR
instructions and may be conditioned on objects or rooms
present in the trajectory. For these object or room refer-
ences, we leverage the REVERIEv1 [17] and MATTER-
PORT3D [5] datasets respectively. A full list of these tem-
plates is provided in the supplementary materials.

3.2. Evaluating Agent Sensitivity

To evaluate agents on a given intervention episode,
we consider both the truncated (τ, I) and intervened
(τ, I+Iint) trajectory-instruction pairs for that episode.
For each, we provide the agent with the instruction and
then force it to follow the trajectory τ until reaching its
final node. Matching common teacher-forcing training
paradigms, the agent is provided with the observations
along the trajectory but its action predictions at each node
are ignored in favor of the true next step. At the final
node, we then record the agent’s predicted action distribu-
tion P (a|τ, I) for each setting where I is either the inter-
vened or truncated instruction. Done over all intervention
episodes, this yields a set of distribution pairs P (a|τj , Ij)
and P (a|τj , Ij + Iintj ) which we can use to examine how
an agent’s beliefs shift under the intervention while every-
thing else about the agent’s experience is held constant. We
examine the distributions rather than argmax actions to im-
prove sensitivity to shifts in agent belief.

For modern VLN agents, these predicted action distri-
butions correspond to distributions over neighboring view-
points in the navigation graph as well as a stop action.
As such, we can map the desired behavior of most of
our interventions to a single or set of neighboring nodes
which should have increased or decreased probability un-
der the intervention. For example, telling a skillful agent
to “turn left” rather than “go forward” should shift the pre-
dicted probabilities towards neighboring nodes on its left.



Figure 2. RxR Trajectory Statistics. (Top) Absolute heading
change between sequential nodes in training trajectories. There is
a strong “forward” biases with 34% of the mass in the 0 to 15◦ bin.
(Bottom) The path length distribution of training dataset, showing
agents have been exposed to varied length trajectories.

For some experiments, we introduce additional instruction
modification setting to examine the effects of dataset biases
in addition to the truncation and interventions constructions.
Details are provided in each experimental section.

RxR vs. Intervention Instructions. By construction, our
generated intervention instructions will tend to contain
more short trajectories and instructions than RxR; however,
RxR does exhibit a significant variance in path length (see
Fig. 2). On the language side, we use templates that match
commonly used phrases in RxR to minimize differences.

Sample Correlation. We note that multiple intervention
episodes may be drawn from a single trajectory and many
will come from each environment. As such, our measure-
ments may exhibit correlations due to this sampling strat-
egy. To account for these effects when discussing the sig-
nificance of our results, we apply hierarchical bootstrap-
ping [18] when providing confidence intervals and linear
mixed effect models when estimating intervention effects.
Additional details are provided in the supplementary.

4. Case Studies on a Recent VLN Agent

We instantiate our intervention paradigm for four com-
mon skills related to stopping and turning and show the re-
sulting analysis for the recent HAMT [6] model. HAMT is
near state-of-the-art agent for VLN that is based on a mul-
timodal transformer model that jointly encodes trajectory
history and instruction text in a hierarchical fashion. HAMT
is trained in multiple stages including auxiliary losses and
joint imitation and reinforcement learning finetuning. For
the experiments below, we use pretrained models and infer-
ence code provided by the authors. Like other VLN models,
HAMT predicts a distribution over neighboring nodes in the
navigation graph and the stop action.
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Figure 3. Average Stop Probability vs Trajectory Length for “im-
plicit stop instruction”, “explicit stop instruction” and “one-step
ahead prior”. Agents respond strongly to both stop interventions
– stopping with high probability across all trajectory lengths. Ex-
plicit stop instruction produce a stronger effect than implicit.

4.1. Stop Instructions

To be successful at the VLN task, an agent must declare
the stop action within a fixed radius of the goal location
described by an instruction. As such, grounding explicit
(“Go to the bedroom and stop.”) and implicit (“... then go
into the bedroom. EOS”) stopping instructions to the stop
action is an important skill. In this experiment, we analyze
stop behavior for explicit or implicit stop instructions. To
assess the effect of path length distributions in RxR, we ex-
amine stop behavior across a range of path lengths.
Intervention Details. All intervention candidates are vi-
able for this experiment as the stop action is always an op-
tion and alternative actions (neighboring nodes) always ex-
ist. For intervention instructions, we append a short stop
instruction such as “This is your destination.” We note
however that the stop experiment offers a complication –
both the truncated and intervened instructions imply stop
actions. The difference being whether this instruction is
implicit (truncation) or explicit (intervention). To provide
additional comparison with non-stop instructions, we also
consider a one-step ahead instruction that includes the in-
struction segment from the terminal node as well (i.e. the
agent is instructed to make the next step in the trajectory).
In total, we produce 8221 intervention episodes. For each
episode, we measure the probability of the stop action
from agent at the final node of the trajectory.
Results. Fig. 3 shows average stop probabilities across dif-
ferent trajectory lengths for the truncated implicit stop, in-
tervened explicit stop, and one-step ahead instruction set-
tings. Error bars are 95% hierarchical bootstrap confidence
intervals. We find average stop probability to remain fairly
constant for implicit and explicit stop instructions.2 This
suggests agents consistently ground the stop instruction re-

2Note that longer trajectories have fewer episodes and larger variation.
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Figure 4. For our directional intervention, we define six directions
on the polar axis (a) and establish filters to avoid ungroundable (c)
or trivial episodes (d) – requiring that at a neighboring node is in
the target direction and at least two other neighbors are not.

gardless of trajectory length despite biased RxR training
trajectory length (see Fig. 2). The plot also suggests stop
probability is higher for explicit than implicit stop which
are both naturally higher than the one-step ahead setting.

To evaluate statistical significance of the effect, we con-
sider a linear mixed effect model (lmer) where the ob-
served stop probability is assumed to be an effect of the
intervention plus random effects from the environment and
source trajectory. We find agents have a higher probability
of stopping when given explicit rather than implicit stop in-
structions (0.72 vs. 0.65, effect: 0.07 anova: p≈0) and
that agents respond to both implicit and explicit stop in-
structions by increasing stop probability compared to the
one-step ahead baseline (effect: 0.36, p≈0).
Summary. We find the agent responds strongly to implicit
and explicit stops across all trajectory lengths and that ex-
plicit stop instructions have a stronger effect.

4.2. Unconditional Directional Instructions

Another foundational skill for following navigation in-
structions is responding appropriately to directional lan-
guage. In this experiment, we examine unconditional direc-
tional instructions which specify directions like “turn left
and go forward” without referencing entities in the environ-
ment. This language is frequently used to orient agents in
the absence of clear landmarks. We consider language de-
scribing forward/backward motions and turns. Specifically,
we explore six direction categories – forward, backward,
left, right, back left, and back right. For each, we define an
angular region relative to the agent’s heading (canonically 0
degrees) as shown in the top-left of Fig. 4. During our ex-
periment, we can examine the amount of probability placed
on neighboring nodes within these regions.
Intervention Details. For each direction, we filter interven-
tion candidates to ensure that a) the final node has at least
one neighbor in the corresponding direction region and b)
that there exist at least two other neighbors outside the di-
rection region. These criteria are demonstrated in Fig. 4.
This ensures that there exists a next step that matches the
intervention instruction and that there are multiple alterna-

tive actions besides stop. Recall that the agent’s action
space is to move to a neighbor or to stop, such that turn-
ing in place is not possible. So for intervention instructions,
we build templates that instruct the agent to face a direction
and then go forward (e.g. “Turn right and walk forward”).
Early experiments with only direction commands resulted
in weaker directional effects. We generate between 3091
and 6745 intervention episodes depending on the direction.
Results. For each episode, we record the agent’s predicted
distribution over neighboring nodes. These can be mapped
to beliefs over relative angles by associating the probability
of visiting neighbor k with the relative angle θk between the
agent’s heading and neighbor k. Fig. 5 shows the distribu-
tion of these probabilities over all episodes for each inter-
vention as histograms on polar axes. For convenience, we
denote the target direction region with a green arc.

Across all directions, we find the agent either stops
(roughly 65% of the time) or moves roughly forward in the
no intervention setting. For left and right, we see a minor
bias towards the corresponding direction despite the agent
not receiving any left/right instruction. This reflects a mi-
nor structural bias caused by the filtering process. All left
(right) episodes include a neighbor to the left (right) and
an agent with a bias towards moving roughly forward may
select them at a higher rate than other nodes.

For the intervention setting, we see a strong response to
directional language. In all cases, the agent stops signifi-
cantly less (roughly 19% of the time on average) and we
observe a shift in distribution towards the corresponding di-
rection. One outlier is the backwards setting which smears
the probability significantly to both the back left and back
right. In all settings, some mass still remains in the forward
direction – reflecting the agent’s bias towards moving for-
ward learned from the training data as reflected in Fig. 2.

We accumulate the probability mass into directional bins
and evaluate the effect of intervention on the accumulated
probability. We again use a linear mixed effect model of
the same from as the previous experiment to account for
potential correlations in scenes and trajectories. We find
the agent exhibits a significantly higher accumulated prob-
ability for the corresponding direction with directional in-
struction than without – estimating intervention effects as
increased accumulated probability for left (0.38, p ≈ 0),
right (0.44, p ≈ 0), forward (0.16, p ≈ 0), backward (0.16,
p ≈ 0), back left (0.43, p ≈ 0), and back right (0.48, p ≈ 0).
Summary. We find the HAMT [6] agent strongly respond
to directional language but some dataset biases from train-
ing are still evident in a bias towards forward actions.

4.3. Object-seeking Instructions

Beyond directional language, instructions also often use
references to nearby objects as convenient landmarks, e.g.
“Walk towards the fireplace”. Unlike the language studied



Figure 5. We plot the agent’s next step direction probability distribution onto polar axis for easier visualization. We provide results for
6 directions defined in 4 and contrast between “No Intervention” (red) with “Direction” (blue). The number on outer circle and middle
dotted circle are max and max

2
respectively. We found the HAMT agent is responsive to all six directional instructions: the probability mass

of directional interventions shifts toward the area indicated by directional instructions across all directions comparing to “No Intervention”

in the previous sections, object-seeking instructions require
grounding the instruction to the visual scene. We examine
simple “walk towards X” style object-seeking instructions.

Intervention Details. We leverage the object annota-
tions from the REVERIE [17] dataset to build intervention
episodes. Specifically, we retain an intervention candidate
if a REVERIE object is visible from its terminal node, the
object is no more than 3m away, there exists a neighbor-
ing node with a heading that is within 15 degrees of the
object’s heading, and there at least two neighbors. That
is to say, trajectories that end near a visible object and a
non-trivial navigation action can reasonably move towards
it. We exclude common structural objects like doors, win-
dows, shelving, railings, etc. as it is often unclear which of
multiple occurrences an agent should move towards. For in-
structions intervention instructions, we append the template
“Walk towards the [object]” where object is the object
name from REVERIE. In total, we generate 839 interven-

tion episodes targeting the following objects in decreasing
order of occurrence: chair, table, picture, cushion, curtain,
plant, cabinet, gym equipment, stool, chest of drawers, bed,
towel, bathtub, tv monitor, and seating.

Results. For each episode, we record the agent’s predicted
distribution over neighboring nodes at the terminal node.
We map these to a distribution over absolute angular errors
relative to the object. For each neighbor k, we compute the
difference in heading angle between node k and the object.
We can then associate the probability of visiting neighbor k
with an angular distance to the target object. These prob-
abilities are accumulated and normalized to produce Fig. 6
which presents distributions over angular distance for the
intervention and no-intervention settings.

This intervention shows a weak effect – with the agent
reducing angular error in the presence of the intervention
instruction somewhat (blue vs. red bars in Fig. 6). We again
leverage a linear mixed effect model to evaluate the effect of
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Figure 6. The distribution of absolute difference between model
prediction and target object direction for intervention and no inter-
vention settings.

intervention on the accumulated probability within 15 de-
gree of absolute angular difference. We find weak fixed
effect of 0.069 (anova, p ≈ 0) for intervention vs. non-
intervention. However, both settings exhibit a wide range
of angular errors suggesting that target objects are not be-
ing grounded accurately – recall that all trajectories have
neighboring nodes that would incur no more than 15 de-
grees of error. To explore this further, we also examine a
baseline Forward Bias agent that places probability on
neighbors inversely proportional to their relative heading.
We find this baseline exhibits a similarly shaped error distri-
bution – suggesting the agent may be taking forward actions
when uncertain about the target object. As in our other ex-
periments, the no intervention setting is more likely to stop
than the intervention (65% vs. 37%).
Summary. We find evidence for only a weak tendency to
move towards referenced objects for this agent.

4.4. Room-seeking Instructions

Agents may also be asked to navigate to specific rooms,
often without specific directional language describing how
to access them – e.g. “go to the kitchen.” In this experi-
ment, we examine these room-seeking instructions both in
the setting where the room is likely visible and when an
agent may need to search for it nearby. We note that this
latter task is beyond the scope of standard VLN instructions
and examine it as a test of generalization. Below, we denote
the case where a room is likely visible as a 1-hop setting
and extensions beyond this as k-hop.
Intervention Details. Using MATTERPORT3D [5] room
region annotations, we associate each node in all trajecto-
ries with a room label. For 1-hop settings, we retain inter-
vention candidates where the terminal node has at least one
neighboring node with a different room type. For k-hop, we
extend this to consider neighbors that are k steps away from
the current node. For intervention instructions, we append
a template “Walk towards the [room].” where room is re-

 Further from Goal Closer to Goal

Figure 7. Distribution of delta distance to target room type. The
delta distance difference of distance to target room (relative to
start position) with or without intervention. Positive delta distance
means the agent move closer to room of target type with inter-
vention than otherwise. The distribution shift towards right with
intervention than otherwise, indicates the agent is responsive to
room-seeking instruction. (-0.15 vs.-0.41, p ≈ 0 )

placed with the corresponding room name from MATTER-
PORT3D. As k-hop episodes involve agents making multi-
ple decisions, we also append “This is your destination.”
afterwards to encourage agents to stop once reaching the
room. We generate 8614 intervention episodes for 1-hop
setting, and 17204 to 27454 episodes for n-hop settings.
1-Hop Results. For each episode, we record the agent’s
predicted distribution over neighboring nodes at end of the
trajectory. To measure agent progress towards nodes with
target room type, we map these to a distribution over change
in geodesic distances to the nearest node with the target
room type. This is done analogously to previous sections
such that the probability of visiting node j from the final
trajectory node T is associated with the delta geodesic dis-
tance ∆d = dgeo(nT , nnear)−dgeo(nj , nnear) to the near-
est node with the target room type nnear. The probabilities
are accumulated and shown in Fig. 7 – values greater than
zero represent the agent moving closer to nodes with the
target room type. We observe a right-shift in the density
suggesting the agent responds somewhat to the interven-
tion. Again using a linear mixed effect model, we estimate
the effect of intervention on the delta geodesic distance as
0.26 (anova, p ≈ 0) for intervention vs no intervention.
However, the agent does not reliably place strong beliefs on
neighbors with the target room type – negative median delta
distance and significant mass to the left of zero.
k-Hop Results. For each k-hop episode, we force the agent
to follow the trajectory until it ends at node nT and then
execute the agent by taking argmax actions until stop is
called and then record the final position nend. We report
the distance to the nearest node with target room type from
here, dgeo(nend, nnear). We shows a ridgeline plot in Fig. 8



Figure 8. Distribution of geodesic distance to nearest target room
location for k-hop room-seeking experiments. Stop to Goal
is a baseline agent that always takes the stop action.

comparing these distributions for 1- to 8-hops.
We find error increases with target room distance. We

again leverage a linear mixed effect model to evaluate the
effect of intervention on dgeo(nend, nnear). We find weak
fixed effect of ≤ −0.1 for intervention vs. non-intervention
for 3,4, and 5 hops with 95% confidence). Note that sam-
ple size varies with number of hops. Overall, this sug-
gests agents have limited ability to search for rooms based
on common sense exploration – perhaps unsurprising given
that RxR instructions typically provide step-by-step guid-
ance.
Summary. The HAMT [6] agent is weakly sensitive to
room type reference instructions when the room is visible
(within one hop) but lacks the ability (room type instruction
have weak or none effects) to perform common sense ex-
ploration to find further away rooms (k-hop). Overall sen-
sitivity is low, suggesting the agent may not rely on room-
specifying portions of instructions when navigating.

5. Comparing Sensitivity Across Agents
For each skill-specific intervention, we can identify a set

of neighbor actions (neighboring nodes or stop) that corre-
spond to a correct grounding of the intervention instruction
– matching the filtering criteria used in their constructions.
For stop instructions, this is the stop action. For turn instruc-

Method Stop Turn Object Room Avg.

EnvDrop [21] 62.65 27.14 11.06 23.64 31.12

EnvDrop (ViL CLIP) [20] 66.76 27.45 12.83 26.82 33.47

HAMT [6] 71.65 43.74 12.00 26.63 38.50

Table 1. We report scores for each skill type for VLN models
with varying RxR task performance (EnvDrop < EnvDrop (ViL
CLIP) < HAMT). We find individual skill performance tends to
improve with overall task performance, but not equally over all
skills. Object- and room-seeking instructions require further study.

tions, neighbors within the corresponding direction angle
range are valid. For object-seeking, neighbors within 15◦

of the object heading. For room-seeking, neighbors with
target room type.

To compare across VLN models, we examine the aver-
age probability mass they place on these correct actions.
Denoting the set of correct actions as Ne for an interven-
tion episode e, we can write a scoring function over a set of
intervention episodes Es for skill s for an agent f as

Score(f, s) =
1

|Es|
∑
e∈Es

∑
an∈Ne

Pf (an|τe, Ie + Iinte) (1)

where Pf (an| · · · ) is agent f ’s predicted probability for ac-
tion an at the end of the intervention trajectory. Higher
scores reflect greater certainty in selecting a grounded ac-
tion on average across all episodes.

Tab. 1 shows these scores for three VLN agents of
varying RxR task performance (EnvDrop < EnvDrop (ViL
CLIP) < HAMT). We find that improved model perfor-
mance on the overall RxR task tends to also leads to im-
provements on skill-specific scores. However, improve-
ments are not uniform across the skills and agents are more
proficient at stopping and turning instructions than those
referencing objects or rooms.

6. Discussion
In this work, we introduced an analysis paradigm for

studying fine-grained skill competency in VLN agents. To
show its value, we presented a case study on a recent VLN
model. This provided insights into agent behavior includ-
ing significant differences in performance on unconditional
(stop and turn) and conditional (object- and room-seeking)
skills. Finally, we presented a comparison between models
in terms of skill-specific scores.

Skill-specific analysis like we present here can provide
insight into the types of things we can reasonable expect
from our models and those which will require further study.
Building explicit test cases for desired skills can serve as
“unit tests” on our path to more complex instruction fol-
lowing systems. This work is a step in that direction.
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